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Abstract. We investigate a stochastic model describing a column of grains in the jamming limit, in the
presence of a low vibrational intensity. The key control parameter of the model, ε, is a representation of
granular shape, related to the reduced void space. Regularity and irregularity in grain shapes, respectively
corresponding to rational and irrational values of ε, are shown to be centrally important in determining
the statics and dynamics of the compaction process.

PACS. 45.70.-n Granular systems – 45.70.Cc Static sandpiles; granular compaction – 45.70.Mg Granular
flow: mixing, segregation and stratification

1 Introduction

The study of slow dynamics in the jamming limit unifies
the fields of granular compaction [1,2] and glasses [3]. Key
features of this involve frustration and hysteresis, among
other complex phenomena [4], with the concomitant diffi-
culty of modelling them in simple and physical ways. We
present in the following a model of remarkable simplic-
ity, which is nevertheless able to capture to a large extent
the complex consequences of non-trivial interactions, even
in one dimension. Issues that are probed include the ef-
fects of orientation, and thus shape, on packing in the
jamming limit. “Irregular” and “regular” shapes of units
(for example, grains) will be seen to have rather differ-
ent consequences for compaction behaviour, when they
are subjected to zero- and low-temperature dynamics.

The present model is an extension, with interactions,
of an earlier model of non-interacting grains, presented
in [5]. For clarity, we summarise in what follows the com-
monality and differences between the two. The previous
model was two-dimensional. Each lattice site was occu-
pied by an ordered grain (+), a disordered grain (−),
or a hole (0). It interpolated between a fluidised regime,
where there were many holes on the lattice, and a jammed
regime, where there were no holes anywhere on the lattice.
The restricted dynamics in the jammed regime forbade
migration of grains anywhere on the two-dimensional lat-
tice, and in particular between columns. The result was
expressible in terms of a column model of noninteract-
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ing grains, with a (trivial) ground state of completely or-
dered (+) grains. This, surprisingly, nevertheless exhibited
some features usually associated with glassiness, such as
slow dynamics and aging [5].

Clearly, disordered systems such as glasses or jammed
granular media do not have ground states that are crys-
talline; equally, their attempts to reach their ground states
are mediated by complex long-range interactions. The
present model, already introduced in [6] and investigated
to some extent in [7], represents an effort to make the
jammed limit of the earlier model more realistic, by the
inclusion of interactions. The column contains no holes.
Each grain is either ordered (represented by a (+) Ising
spin) or disordered (represented by a (−) spin). However,
and differently from the previous model, we take into ac-
count the effect of voids (holes that partially occupy a
lattice site) which are associated with each disordered ori-
entation of a grain. Thus, while each ordered grain fully
occupies one unit of space, each disordered grain occu-
pies ε units of space, so that (1 − ε) is a measure of the
trapped void space. The net volume occupied by a disor-
dered grain, or the corresponding void space, will depend
on its shape; we see that ε is thus a simple representation
of granular shape. Also, and differently from the earlier
model, the process of compaction is now no longer a sim-
ple relaxation into a completely ordered state: a given dis-
tribution of (+) and (−) grains, as in nature, responds to
externally imposed dynamics, by minimising void space lo-
cally, in the presence of disorder. The ground states so ob-
tained resemble much more the random close-packed state
found in granular systems [8] than the rather unrealistic
crystalline state (all grains ordered) obtained before.
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2 The model

Our model is a fully directed model of interacting grains,
where causality induces a directionality both in time and
in space, as the orientation of a given grain only influences
the grains below it, and at later times. Grains occupy all N
sites of a column. As said above, we assume that they
only assume two orientational states. We set σn = +1
(resp. σn = −1) if grain n is ordered (resp. disordered).
A configuration of the system is uniquely defined by the
orientation variables {σn}.

It is known [9,10] that the response of jammed gran-
ular media to low-amplitude vibration is compacting;
that is, grains rearrange themselves to locally maximise
their packing fraction or, equivalently, minimise their void
space. We model this by a local stepwise compacting dy-
namics: that is, a given grain orients itself to minimise
void space locally, given the orientations of grains above
itself.

To be more specific, in the presence of a dimensionless
vibration intensity Γ , we consider a stochastic dynamics,
defined by the orientation-flipping rates{

wn(+ → −) = exp(−(λn + hn)/Γ ),

wn(− → +) = exp(−(λn − hn)/Γ ).
(2.1)

In these expressions, hn and λn are, respectively, the local
ordering field and the activation energy felt by grain n.
These quantities are assumed to only depend on the ori-
entations of grains above grain n.

We make the further simplifying assumption that the
activation energy λn does not depend on grain orientations
at all. We write

λn = nΓ/ξdyn, (2.2)

where ξdyn is defined to be the dynamical
length (see (2.6)). Roughly speaking, ξdyn is the depth of
the nonequilibrium boundary layer: grains which are well
within this length can order relatively freely in response
to surface events, while grains much deeper relax only
logarithmically in time [5].

The only dependence of the dynamics on orientations
is via the ordering field hn, which determines the orienta-
tional response of grain n to orientations of grains above
it. We choose to write the simple, linear formula

hn = εm−
n − m+

n , (2.3)

where m+
n and m−

n are the numbers of ordered and disor-
dered grains above grain n:

m+
n =

1
2

n−1∑
k=1

(1 + σk), m−
n =

1
2

n−1∑
k=1

(1 − σk). (2.4)

In spite of its simplicity, the dynamics defined
by (2.1)–(2.3) can be shown to capture the compaction
mechanism sketched in the Introduction, namely a local
minimisation of the excess void space [11]. In particular,
a transition from the ordered to the disordered state for
grain n is hindered by the number of voids that are already

above it. The whole picture will become clearer with the
example of ε = 1/2, discussed in Section 3.2.

In order to perform numerical Monte-Carlo simula-
tions we will need a discrete-time formulation of the above
rules. The flipping rates wn become flipping probabilities


pn(+ → −) =

Pn

1 + exp(2hn/Γ )
,

pn(− → +) =
Pn

1 + exp(−2hn/Γ )
,

(2.5)

where the factor

Pn = exp(−λn/Γ ) = exp(−n/ξdyn) (2.6)

describes the a priori exponential slowing down of the dy-
namics with depth n.

Throughout the following, ε, ξdyn, and Γ (the latter
being referred to as “temperature”) will be considered as
three independent parameters of the model. In particular,
ε will not necessarily be restricted to the range 0 < ε < 1,
suggested by the interpretation of (1 − ε) as the trapped
void space.

The zero-temperature statics and dynamics will cru-
cially depend on whether ε is rational or irrational.
Arguing that rational and irrational ε corresponds to
smooth/regular and rough/irregular shapes, respectively,
this difference is to be expected, and will be discussed
further.

3 Zero-temperature statics

As the dynamical rules (2.1) are fully directional, they
clearly cannot obey detailed balance. The dynamics sim-
plifies, however, in the Γ → 0 limit [6], where (2.1) yields

wn(− → +)
wn(+ → −)

= exp(2hn/Γ ) →
{∞ if hn > 0,

0 if hn < 0.
(3.1)

From a purely static viewpoint, ground states of the sys-
tem can therefore be defined by the condition that the
orientation of every grain is aligned along its local field,
according to the deterministic equation:

σn = signhn =
{

+ if hn > 0,
− if hn < 0,

(3.2)

provided hn �= 0 (see below). The condition (3.2) only in-
volves the parameter ε (see (2.3)). It is recursive, because
of directionality, in that the right-hand side at depth n
only involves the upper grains k = 1, . . . , n − 1. The up-
permost orientation σ1 is left unspecified, as the corre-
sponding local field vanishes identically. In the following,
we assume for definiteness that the uppermost grain is
ordered:

σ1 = +. (3.3)

It turns out that the zero-temperature rule (3.2)
yields a rich ground-state structure, because of subtle
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commensurability and frustration effects. Our starting
point is to observe that (3.2) implies



hn > 0 =⇒ σn = +,
m+

n+1 = m+
n + 1,

m−
n+1 = m−

n ,
hn+1 = hn − 1,

hn < 0 =⇒ σn = −,
m+

n+1 = m+
n ,

m−
n+1 = m−

n + 1,
hn+1 = hn + ε.

(3.4)

The number and the nature of ground states depend on
whether ε is rational or irrational, which we consider sep-
arately below.

3.1 Irrational ε: unique quasiperiodic ground state

Irrational values of ε imply, in qualitative terms, a strong
irregularity of grain shape. We refer to this as “rough-
ness”. Below, we demonstrate that the ground state of a
packing of rough grains is unique, and optimally, but not
maximally packed. We can visualise this as the interlock-
ing of jutting edges to minimise, but not eliminate, voids.

For irrational ε, (3.4) implies recursively that all the lo-
cal fields hn are non-zero, and that they lie in the bounded
interval

−1 ≤ hn ≤ ε. (3.5)

Let us introduce the following superspace formalism.
Consider the integers (m−

n , m+
n ) as the co-ordinates of

points on a square lattice. We thus obtain a broken,
staircase-shaped line, starting as (m−

1 , m+
1 ) = (0, 0),

(m−
2 , m+

2 ) = (0, 1) (see (3.3)), etc. Vertical steps cor-
respond to ordered (+) grains, whereas horizontal steps
correspond to disordered (−) grains. Equation (3.5) de-
fines an oblique strip with slope ε in the (m−, m+) plane,
which contains the entire broken line thus constructed (see
Fig. 1).

A unique infinite configuration of grain orientations
(i.e., a unique broken line) is thus generated. This con-
figuration is quasiperiodic. Indeed the above construction
is equivalent to the cut-and-project method of generating
quasiperiodic tilings of the line, which has been extensively
studied [12] in the framework of quasicrystals. (Had we
made the initial choice σ1 = − instead of (3.3), we would
have obtained the same quasiperiodic configuration, up to
a permutation of the two uppermost grains.) We mention
for further reference the following explicit expressions1 for
m±

n and hn:

m+
n = n − m−

n = 1 + Int((n − 1)Ω),

hn = −1 +
Frac((n − 1)Ω)

1 − Ω
, (3.6)

where the rotation number Ω reads

Ω = ε/(1 + ε). (3.7)

1 Int(x), the integer part of a real number x, is the largest
integer less than or equal to x, and Frac(x) = x− Int(x) is the
fractional part of x (0 ≤ Frac(x) < 1).

Fig. 1. Geometrical construction of the quasiperiodic ground
state of the model for the golden-mean slope (3.9). The two
ways of going around the first cell, marked with a circle, cor-
respond to the two possible choices for the orientation of the
uppermost grain.

An immediate consequence of (3.6) is that there are well-
defined proportions of ordered and disordered grains in
the ground state:

f+ = Ω = ε/(1 + ε), f− = 1 − Ω = 1/(1 + ε). (3.8)

This geometrical construction is illustrated in Figure 1
for the most familiar irrational number, the inverse golden
mean [13]:

ε = Φ − 1 = 1/Φ, Ω = 2 − Φ = 1/Φ2,

Φ = (
√

5 + 1)/2 ≈ 1.618033. (3.9)

The corresponding grain configuration is given by a
Fibonacci sequence [12,13]:

{σn} = +−−+−−+−+−−+−−+−+−−+−+−−· · ·
To recapitulate, at any point in the ground state, the

ordering field hn will assume a finite, non-zero value, im-
plying in its turn a given orientation of the grain that
follows. The process is therefore fully deterministic, and
the state obtained, unique. We will see that things will be
rather different for rational values of ε.

3.2 Rational ε: degenerate ground states

Rational values of ε imply, in qualitative terms, a regular-
ity of grain shape or of void space, which we term “smooth-
ness”. We might here expect that regularly shaped grains
could align themselves to fit into accumulated void space,
in a given ground state configuration; this in fact happens,
leading to states of perfect packing at various points of the
column. This in turn gives rise to the observed degeneracy
of ground states to be discussed further below.

For a rational ε:

ε = p/q, Ω = p/(p + q), (3.10)
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Table 1. Patterns building up the random ground states for the first rational values of ε. The second example with period 5 is
illustrated in Figure 2.

period p + q rot. number Ω slope ε p q pattern 1 pattern 2
2 1/2 1 1 1 + − − +
3 1/3 1/2 1 2 + −− − + −
3 2/3 2 2 1 + − + − + +
4 1/4 1/3 1 3 + −−− − + −−
4 3/4 3 3 1 + − + + − + + +
5 1/5 1/4 1 4 + −−−− − + −−−
5 2/5 2/3 2 3 + −− + − − + − + −
5 3/5 3/2 3 2 + − + − + − + + − +
5 4/5 4 4 1 + − + + + − + + + +
6 1/6 1/5 1 5 + −−−−− − + −−−−
6 5/6 5 5 1 + − + + + + − + + + + +

Fig. 2. Geometrical construction of the ground states of the
model for the rational slope ε = 2/3. The marked cells, en-
tirely contained in the strip, are responsible for the non-zero
configurational entropy.

in irreducible form (p and q are mutual primes), some
of the local fields hn generated by the recursion equa-
tions (3.4) vanish. The corresponding grain orienta-
tions σn remain unspecified. This means that grain n has
a perfectly packed column above it, so that it is free to
choose its orientation. For ε = 1/2, for example, one can
visualise that each disordered grain “carries” a void half
its size, so that units of perfect packing must be permuta-
tions of the triad +−−, where the two “half” voids from
each of the (−) grains are filled by the (+) grain. (Evi-
dently this is a one-dimensional interpretation of packing,
so that the serial existence of two half voids and a grain
should be interpreted as the insertion of a grain into a full
void in higher dimensions.) The dynamics, which is step-
wise compacting, selects only two of these patterns, +−−
and − + − (see the second line of Tab. 1).

This feature of rational slopes is clearly visible on
the geometrical construction. Figure 2, corresponding to
ε = 2/3, shows that some of the lattice cells, marked with
circles, are entirely contained in the closed strip (3.5).
Consider one such cell. The broken line enters the cell at

its lower left corner and exits the cell at its upper right cor-
ner. It can go either counterclockwise, via the lower right
corner, giving σn+1 = −, σn+2 = +, or clockwise, via
the upper left corner, giving σn+1 = +, σn+2 = −. Each
marked cell thus generates a binary choice in the construc-
tion. This orientational indeterminacy occurs at points of
perfect packing, such that n is a multiple of the period p+q,
equal to the denominator of the rotation number Ω. The
model therefore has a non-zero ground-state entropy, or
zero-temperature configurational entropy, Σ = ln 2/(p+q)
per grain. Each ground state is a random sequence of two
well-defined patterns of length p + q, each of them made
of p ordered and q disordered ones, so that (3.8) still holds
for each of the ground states. The patterns only differ by
their first two orientations. The first cases are listed in
Table 1. Finally, the period p + q is formally infinite for
an irrational slope. Accordingly, there is only one marked
cell in Figure 1, for n = 0, corresponding to the fact that
only the uppermost grain is unspecified.

4 Zero-temperature dynamics

Zero-temperature dynamics is a priori the canonical way
of retrieving the ground states of a system. Here, the rule
for zero-temperature dynamics is:

σn → signhn, (4.1)

according to (3.1), with the definition (2.3). We will find
that irregular grains are able to retrieve their unique
ground state, but that the degeneracy of the ground
states for regularly shaped grains will make them im-
possible to retrieve. In the latter case, we find instead
a steady state with non-trivial density fluctuations above
the ground states, which recall the observed density fluc-
tuations above the random close-packed state [9,10].

4.1 Irrational ε, infinite ξdyn: ballistic coarsening

For irrational ε, the rule (4.1) is always well-defined, as
the local fields hn never vanish. We start with the situa-
tion where ξdyn is infinite. We assume that the system is
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Fig. 3. Plot of the inverse ordering velocity 1/V of zero-
temperature coarsening dynamics at infinite ξdyn, against the
irrational slope ε, for 0 < ε < 1.

initially in a disordered state, where each grain is oriented
at random: σn = ± with equal probabilities, except for
the uppermost one, which is fixed according to (3.3).

The zero-temperature dynamics is observed to drive
the system to its quasiperiodic ground state. This order-
ing propagates down the system from its top surface, via
ballistic coarsening. At time t, the grain orientations have
converged to their ground-state values, given by the above
geometrical construction, in an upper layer whose depth
is observed to grow linearly with time:

L(t) ≈ V t, (4.2)

whereas the rest of the system is still nearly in its disor-
dered initial state.

This phenomenon is similar to phase ordering, as order
propagates over a macroscopic length L(t) which grows
forever. It is however different from usual coarsening, as
the depth of the ordered region grows ballistically, with
a well-defined ε-dependent ordering velocity V , instead
of diffusively, or even more slowly [14]. Figure 3 shows a
plot of the inverse of the ordering velocity, measured in
a numerical simulation, against ε, for 0 < ε < 1. The
ordering velocity obeys the symmetry property V (ε) =
V (1/ε). It is observed to vary smoothly with ε (although it
is only defined for irrational ε), and to diverge as V ∼ 1/ε
as ε → 0.

4.2 Irrational ε, finite ξdyn: crossover to logarithmic
coarsening

For irrational ε, in the situation where ξdyn is finite,
but large at the microscopic scale of a grain, the ballis-
tic coarsening law (4.2) is to be modified as dL/dt ≈
V exp(−L/ξdyn), taking the slowing down factor (2.6) into
account, hence

L(t) ≈ ξdyn ln(1 + V t/ξdyn). (4.3)

Fig. 4. Scaling plot of L(t)/ξdyn against t/ξdyn for zero-
temperature coarsening dynamics with the golden-mean slope.
Symbols: numerical data. Full line: prediction (4.3), with V =
2.58.

Equation (4.3) exhibits a crossover between the bal-
listic law (4.2) for 1 	 V t 	 ξdyn, and the logarithmic
coarsening law

L(t) ≈ ξdyn ln t, (4.4)

already present in the model of non-interacting
grains [5,6]. The dynamical length ξdyn thus con-
trols the spatial dependence of dynamical behaviour. In
earlier work [5] it was shown to determine the extent
to which order propagates down the column, in the
glassy regime. This interpretation in terms of an ordered
boundary layer continues to be valid in the present
case: For an initially disordered state, the application
of zero-temperature dynamics causes the quasiperiodic
ground state to be recovered downwards from the free
surface to a depth which grows ballistically with time.
When L(t) becomes comparable with ξdyn, the effects of
the free surface begin to be damped, and in particular,
for t 
 ξdyn/V , one recovers the logarithmic law (4.4),
widely associated with the slow dynamical relaxation of
vibrated sand [9].

Equation (4.3) has been checked against the results of
accurate numerical simulations, for the golden-mean slope.
Figure 4 shows a scaling plot of numerical data for L(t)
corresponding to ξdyn = 50 and 100, together with the pre-
diction (4.3), with no adjustable parameter. The ordering
velocity V ≈ 2.58 is taken from the data of Figure 3.

4.3 Rational ε, infinite ξdyn: anomalous roughening

We now turn to zero-temperature dynamics for rational ε.
The updating rule (4.1) is not always well-defined as it
stands, as the local fields hn may now vanish. In such a
circumstance, it is natural to choose the corresponding
orientation at random:

σn →



+ if hn > 0,
± with prob. 1/2 if hn = 0,
− if hn < 0.

(4.5)
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Fig. 5. Plot of the distribution of the local field hn for n ≈
1000. Histogram: numerical data (data for n = 999 and n =
1000 are mixed in order to avoid spurious parity effects). Full
curve: Gaussian law with width W1000 = 8.94.

The zero-temperature dynamics defined in this way there-
fore keeps a stochastic component. We focus our attention
onto the simplest rational case, i.e., ε = 1. Equation (2.3)
for the local fields reads

hn = −
n−1∑
m=1

σm. (4.6)

We consider first the case where ξdyn is infinite. We
observe that the zero-temperature dynamics (4.5) does
not drive the system to any of its degenerate dimerised
ground states. The system rather shows a fast relaxation
to a unique, non-trivial steady state, independent of the
initial state. We now investigate this novel kind of zero-
temperature steady state in some detail.

Density fluctuations

First of all, the local field hn has unbounded fluctuations
in the steady state. Figure 5 shows that these fluctuations
have a Gaussian distribution of width Wn, at least deep
enough in the system (n 
 1), except for a definite ex-
cess of small values of the local field: |hn| ∼ 1 	 Wn.
Figure 6 (already shown in [7] and reproduced here for
completeness) demonstrates that the local field variance
grows as

W 2
n = 〈h2

n〉 ≈ An2/3, (4.7)
with A ≈ 0.83.

The exponent 2/3 of the anomalous roughening
law (4.7) can be explained by means of the following local
Markovian approximation. Assume that the local field hn

obeys an effective Langevin equation of the form

dhn/dt = −anhn + ηn(t), (4.8)

where ηn(t) is a white noise so that 〈ηn(t)ηn(t′)〉 =
2Dn δ(t − t′). Thus hn(t) is a Gaussian variable, whose
steady-state width Wn is given by the Einstein relation:

W 2
n = 〈h2

n〉 = Dn/an. (4.9)

Fig. 6. Log-log plot of W 2
n = 〈h2

n〉 against depth n, for zero-
temperature dynamics with ε = 1. Full line: numerical data.
Dashed line: fit to asymptotic behaviour, leading to (4.7) (af-
ter [7]).

The effective parameters an and Dn can be estimated as
follows. For the deterministic part, (4.5) implies

d〈hn〉/dt =
n−1∑
m=1

〈σm − signhm〉 ≈ −(1−Qn)〈hn〉, (4.10)

where the order parameter Qn is defined as

Qn = 〈σn signhn〉. (4.11)

The latter quantity will be shown below to fall off
as n−1/3 (see (4.22)), implying an ≈ 1. The absence of
divergence of the relaxation time τn = 1/an with n ex-
plains the observed fast relaxation to the steady state. As
the fluctuating part is due to the second line of (4.5), the
strength of the noise Dn reads, in some units,

Dn ≈ b
n−1∑
m=1

Prob{hm = 0} ≈ b√
2π

n−1∑
m=1

1
Wm

, (4.12)

assuming that the hn have a Gaussian distribution. Equa-
tion (4.9) yields

W 2
n ≈ b√

2π

n−1∑
m=1

1
Wm

, (4.13)

hence the power law (4.7), with A = (9b2/(8π))1/3.
The anomalous roughening law (4.7) for the fluctua-

tions of the ordering field hn is the most central feature
of the zero-temperature steady state observed for ratio-
nal ε. It implies that, unless arranged by hand, the known
ground states of a system of regularly shaped objects (i.e.,
the crystalline ground states) will never be retrieved. On
the contrary, the steady state will be one of density fluc-
tuations above the ground state (which are related to fluc-
tuations of the excess void space). The present model, to
our knowledge, thus contains the first derivation of a possi-
ble source of density fluctuations in granular media [9,10],
which, here, arise quite naturally from the effect of shape.
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These anomalous fluctuations can be put in perspec-
tive with two different physical situations. First, as al-
ready underlined in [7], the power law (4.7) is reminiscent
of the domain-growth mechanism in the low-temperature
coarsening regime of the Ising chain with Kawasaki dy-
namics [15]. Second, using n to represent time in a ran-
dom walk, the above results could be used to explain the
R2

n ≈ n2/3 law recently observed in two-dimensional sim-
ulations of the effect of shape in particulate cages [16].

Orientation and local field correlations

If the grain orientations were statistically independent,
i.e., uncorrelated, one would have the simple result 〈h2

n〉 =
nε, while (4.7) implies that 〈h2

n〉 grows much more slowly
than n. The orientational displacements of each grain are
therefore fully anticorrelated. The anticorrelated orienta-
tional displacements are reminiscent of the bridge collapse
seen in displacement-displacement correlations of strongly
compacting grains [10]; grain orientational displacements
in the direction of vibration were there seen to be strongly
anticorrelated in jammed regions, as each grain tried to
collapse into the void space trapped by its neighbours.
Interestingly, correlations transverse to the shaking di-
rection were [10] found to be rather small, thus, in self-
consistency terms justifying the choice of a column model
in the present case. Once again, if we adopt a kinetic view-
point and treat n as time in a random walk, these anticor-
relations recall the temporal anticorrelations observed in
recent experiments investigating cage properties near the
colloidal glass transition [17].

To be more specific, let us denote the orientation and
local field correlation functions as

cm,n = 〈σmσn〉, Cm,n = 〈hmhn〉. (4.14)

Equation (4.6) implies

Cm,n =
m−1∑
k=1

n−1∑
�=1

ck,�,

cm,n = Cm+1,n+1 − Cm+1,n − Cm,n+1 + Cm,n, (4.15)

and especially cn,n = Cn+1,n+1 − 2Cn,n+1 + Cn,n = 1, so
that Cn,n − Cn,n±1 ≈ 1/2, and more generally

Cn,n − Cn,n+k ≈ |k|/2 (|k| 	 n). (4.16)

The power law (4.7) and the behaviour (4.16) can be
combined into the scaling Ansatz

Cm,n ≈ WmWn F
(

n − m

WmWn

)
, (4.17)

where F is a positive, even function, with a cusp at the
origin of the form

F(x) = 1 − |x|/2 + · · · (|x| 	 1). (4.18)

Fig. 7. Scaling plot of the correlation function Cm,n of the
local fields in the zero-temperature steady state with ε = 1,
demonstrating the validity of (4.17), and showing a plot of
the scaling function F . The full lines show the cusp be-
haviour (4.18).

As a consequence of (4.15), the orientation correlations
obey a similar scaling law:

cm,n ≈ δm,n − 1
WmWn

F

(
n − m

WmWn

)
, (4.19)

where F (x) = d2F/dx2 is another positive, even function
such that∫ +∞

−∞
F (x) dx =

∫ +∞

0

xF (x) dx = 1. (4.20)

The first of these sum rules confirms that spin fluctuations
are asymptotically totally screened:

∑
m �=n cn,n ≈ −cn,n =

−1. The scaling laws (4.17) and (4.19) are accurately con-
firmed by numerical data for Cm,n and cm,n, whose scaling
plots are respectively shown in Figures 7 and 8.

A final consequence concerns the mixed correlation

〈σnhn〉 =
n−1∑
m=1

cm,n, (4.21)

for which the scaling results (4.17), (4.19) yield 〈σnhn〉 ≈
1/2. Scaling then implies that the order parameter defined
in (4.11) falls off as Qn ∼ 1/Wn, hence the estimate

Qn ≈ a n−1/3. (4.22)

This power-law decay is well confirmed by numerical data,
shown in Figure 9, which yield a ≈ 0.44.

All of the above adds up, for the case of regularly
shaped grains, to a picture of grain orientations which are
anticorrelated within a dynamical cluster [10] whose size
scales as n2/3; grains outside such a cluster, are orienta-
tionally screened from each other, i.e., the screening length
also goes as n2/3. (Correspondingly, from a kinetic view-
point [16], these results may be interpreted in terms of the
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Fig. 8. Scaling plot of the orientation correlation function cm,n

for n �= m in the zero-temperature steady state with ε = 1,
demonstrating the validity of (4.19), and showing a plot of
(minus) the scaling function F (after [7]).

time n2/3 spent by a walker bouncing back and forth be-
tween the walls of a cage, where his steps are consequently
anticorrelated one with the other.) Consistently, the order
parameter Qn, proportional to the ratio of the screening
length to the total length, goes as n2/3/n ∼ n−1/3. By con-
trast, when ε is irrational, earlier orientations influence all
successive ones, as the orientation correlations cmn do not
decay to zero. The order parameter is Qn = 1 identically
while, loosely speaking, the screening length scales as n.

Entropy

We now turn to the entropy of the steady state, defined
by the usual Boltzmann formula

S = −
∑
C

p(C) ln p(C), (4.23)

where p(C) is the probability that the system is in the
orientation configuration C in the steady state, and the
sum runs over all the 2n configurations C = {σm} (m =
1, . . . , n) of a system of n grains.

On the theoretical side, the entropy S can be estimated
as follows, using the main feature of the zero-temperature
steady state, i.e., the roughening law (4.7). Think of the
depth n as a fictitious discrete time, and of the local
field hn as the position of a random walker at time n. For a
free lattice random walk of n steps, one has 〈h2

n〉 = n, and
the entropy reads Sflat = n ln 2, as all configurations are
equally probable. Because 〈h2

n〉 = W 2
n 	 n, the entropy S

of our random walk is reduced with respect to Sflat. Let

∆S = Sflat − S = n ln 2 − S (4.24)

be the entropy reduction [18]. Consider first a strict con-
straint |hn| < L. The probability that a random walk of
n steps obeys this constraint is known to fall off expo-
nentially, as Pn ≈ exp(−π2n/(2L2)). For a slowly time-

Fig. 9. Plot of n1/3 times the order parameter Qn against n,
for the zero-temperature steady state with ε = 1, Symbols:
numerical data. Full line: common limit value, yielding a ≈
0.44 in (4.22).

dependent constraint |hn| < Ln, this estimate gener-
alises to

Pn ≈ exp

(
−π2

2

n∑
m=1

1
L2

m

)
. (4.25)

With the assumption that the strict constraint |hn| < Wn

and the weak constraint 〈h2
n〉 = Wn generate similar en-

tropy reductions for similar constraint profiles, we obtain
the estimate

∆S = − lnPn ∼
n∑

m=1

1
W 2

m

∼ n1/3. (4.26)

We have evaluated the steady-state entropy S in a
numerical simulation, using its definition (4.23), by mea-
suring the probabilities p(C) of all the configurations. As
there are 2n configurations for a system of n grains, the
a priori statistical error only decays as (2n/t)1/2. Reliable
data are obtained in this way for t ∼ 109 and n ≈ 20. Fig-
ure 10 shows a plot of the entropy reduction ∆S against n.
The data show that ∆S is small, at least for system sizes
reachable by numerical simulations. For n = 12 (data
of Fig. 11) we have ∆S ≈ 0.479. A reasonable semi-
quantitative agreement with the estimate (4.26) is found:
the fit shown in the plot suggests that (4.26) is affected
by a logarithmic correction (which cannot be explained by
the simple argument given above), with a small amplitude
around 0.06.

Figure 11 shows the normalised probabilities 212 p(C),
plotted against the 212 = 4096 configurations C of a col-
umn of 12 grains, sorted according to lexicographical order
(read down the column). This plot exhibits a startlingly
rugged structure on this microscopic scale: some configu-
rations are clearly visited far more often than others. It
turns out that the most visited configurations are the 26 =
64 ground states of the system (empty circles). We suggest
that this behaviour is generic: i.e., the dynamics of com-
paction in the jammed state leads to a microscopic sam-
pling of configuration space which is highly non-uniform,
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Fig. 10. Plot of the measured entropy reduction ∆S in the
zero-temperature steady state with ε = 1, defined in (4.24),
against n ≤ 19. Symbols: numerical data. Full line: fit ∆S =
(62 ln n + 53)10−3 n1/3.

Fig. 11. Plot of the normalised probabilities 212 p(C) of the
configurations of a column of 12 grains in the zero-temperature
steady state with ε = 1, against the configurations C in lexi-
cographical order. The open circles mark the 26 = 64 ground-
state configurations, which turn out to be the most probable
(after [7]).

and reflects the structure of the ground states. In spite of
this fine structure, the entropy reduction ∆S ∼ n1/3 is
subextensive, and therefore negligible with respect to the
free entropy Sflat = n ln 2, in qualitative agreement with
Edwards’ flatness hypothesis [1,19]. Our model thus pro-
vides a natural reconciliation between the intuitive per-
ception that not all configurations can be equally visited
in the jammed state where compaction is favoured, and
the flatness hypothesis of Edwards, which is eminently
sensible for macroscopically large systems.

4.4 Rational ε, finite ξdyn: crossover to Brownian
roughening

In the case where ξdyn is finite, the system still relaxes to
a non-trivial steady state, which is qualitatively similar to
that obtained for ξdyn = ∞, investigated above.

At the quantitative level, the main effect of the finite-
ness of ξdyn is to induce a nontrivial profile of W 2

n . In
the regime where both n and ξdyn are large, the following
scaling law is observed

W 2
n ≈ (W 2

n)∞ f(n/ξdyn), (4.27)

where (W 2
n)∞ is given by the anomalous roughening

law (4.7) of the ξdyn = ∞ steady state, which holds more
generally for n 	 ξdyn, so that f(0) = 1.

A qualitative understanding of the scaling function f
can be obtained by generalising the above Markovian ap-
proximation. The expression (4.12) for the strength of the
noise is readily replaced by

Dn ≈ b√
2π

n−1∑
m=1

e−m/ξdyn

Wm
. (4.28)

For the deterministic part, (4.5) implies

d〈hn〉/dt =
n−1∑
m=1

〈σm − signhm〉 e−m/ξdyn . (4.29)

The right-hand side is not simply related to hn any more,
so that a further level of approximation is needed. The
most straightforward choice reads

an ≈ 1
n

n−1∑
m=1

e−m/ξdyn ≈ ξdyn

n
(1 − e−n/ξdyn). (4.30)

Skipping the derivation, we mention that (4.28), (4.30)
imply (4.27), with

f(x) =
x1/3

1 − e−x

(∫ x

0

(1 − e−y)1/2 y−1/2 e−y dy

)2/3

≈
{

1 + x/12 (x 	 1),

K x1/3 (x 
 1),
(4.31)

and K = 0.87732. In view of the crudeness of the above
assumptions, (4.31) is only meant to provide a qualita-
tive description of the scaling function f . Its asymptotic
behaviour for x 
 1 is, however, expected to yield the
correct dependence

W 2
n ≈ AKξ

−1/3
dyn n (4.32)

of the width Wn on n and ξdyn. The profile of local fields
is thus predicted to be Brownian for n 
 ξdyn. Fig-
ure 12 shows a scaling plot of numerical data for the ratio
W 2

n/(W 2
n)∞, against x = n/ξdyn. A scaling law of the

form (4.27) is clearly observed. The fitted curve is com-
patible with (4.32), with K ≈ 2.66.
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Fig. 12. Scaling plot of the ratio W 2
n/(W 2

n)∞ against x =
n/ξdyn in the zero-temperature steady state with ε = 1, il-
lustrating the scaling law (4.27), and showing a plot of the
scaling function f . Symbols: numerical data. Curve: fit f =
1 + a((1 + bx)1/3 − 1), with a = 5.63, b = 0.105, so that
K = a b1/3 = 2.66.

5 Low-temperature dynamics

We now turn to the investigation of the low-temperature
dynamics of the model. Our main findings are the obser-
vation of intermittency in the position of the boundary
layer; this has recently been observed in experiments of
vibrated granular beds [20].

We consider for simplicity the case of an infinite ξdyn.
If the slope ε is irrational, the dynamical rule (4.1) is fully
deterministic at zero temperature, so that a small non-
zero temperature is expected to have drastic effects. To
the contrary, for a rational slope ε, the rule (4.5) is already
stochastic at zero temperature, and indeed no interesting
effect appears at a small non-zero temperature.

We therefore focus our attention onto the case of an
irrational slope ε. We recall that the zero-temperature
dynamics drives the system to its unique quasiperiodic
ground state, where each orientation is aligned with its
local field, according to (3.2). For a low but non-zero
temperature Γ , there will be mistakes, i.e., orientations
σn = − signhn not aligned with their local field. Equa-
tion (3.1) suggests that the a priori probability of observ-
ing a mistake at site n scales as

Π(n) ≈ exp(−2|hn|/Γ ). (5.1)

Hence the sites n such that the local field hn is rela-
tively small in the ground state (|hn| ∼ Γ 	 1) will be
nucleation sites for mistakes, and thus govern the low-
temperature dynamics, in a sense that will become more
precise.

The leading nucleation sites can be located as fol-
lows. Equation (3.6) shows that the local field hn is small
when nΩ is close to an integer m. The latter turns out to
be m = m+

n . Indeed

nΩ = m + δ =⇒ hn = δ/(1 − Ω) (5.2)

for δ small enough (Ω − 1 < δ < Ω). The leading nucle-
ation sites therefore correspond to the rational numbers
m/n which are the closest to the irrational rotation num-
ber Ω. This is a well-defined problem of Number Theory,
referred to as the Diophantine approximation [13].

5.1 The golden-mean slope

Before we tackle the problem in general, we consider again
for definiteness the golden-mean slope (3.9). In this case,
we are led to introduce the Fibonacci numbers Fk [12,13],
defined by the recursion formula

Fk = Fk−1 + Fk−2 (F0 = 0, F1 = 1). (5.3)

We have alternatively

Fk =
Φk − (−Φ)−k

√
5

. (5.4)

The leading nucleation sites are the Fibonacci sites n =
Fk. We have m = m+

n = Fk−2, m−
n = Fk−1, and

hn = (−)k Φ−(k−1), (5.5)

so that

Πk = Π(Fk) ∼ exp
(
− 2Φ√

5 ΓFk

)
. (5.6)

We can therefore draw the following picture of
low-temperature dynamics. Mistakes are nucleated at
Fibonacci sites, according to a Poisson process. They are
then advected with constant velocity V ≈ 2.58, just as
in the zero-temperature case. The system is ordered ac-
cording to its quasiperiodic ground state in an upper layer
(n < N (t)), while the rest is disordered, somehow like the
zero-temperature steady state for a rational slope. The
depth N (t) of the ordered layer, given by the position
of the uppermost mistake, is a collective co-ordinate de-
scribing low-temperature dynamics. It evolves according
to ballistic advection, i.e., N (t1) = N (t0) + V (t1 − t0),
until it jumps backward to a smaller depth N (t1) = Fk,
if another mistake is nucleated there. Figure 13 shows a
typical sawtooth plot of the instantaneous depth N (t), for
a temperature Γ = 0.003. The leading nucleation sites are
observed to be given by Fibonacci numbers.

The system thus reaches a steady state, characterised
by a finite ordering length 〈N〉, which diverges at low
temperature, as mistakes become more and more rare.
The law of this divergence can be predicted by the fol-
lowing argument. The most active nucleation Fibonacci
site is such that the nucleation time 1/Πk is comparable
to the advection time to the next nucleation site Fk+1,
i.e., (Fk+1 − Fk)/V ≈ Fk/(ΦV ), hence the estimate

ΠkFk

ΦV
∼ 1. (5.7)

Indeed, less deep sites have too small nucleation rates,
while the mistakes nucleated at deeper sites have lit-
tle chance to be the uppermost ones. Equations (5.6)
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Fig. 13. Plot of the instantaneous depth N (t) of the ordered
layer, for the golden-mean slope at Γ = 0.003. Dashed lines:
leading nucleation sites given by consecutive Fibonacci num-
bers (bottom to top: F11 = 89, F12 = 144, F13 = 233) (af-
ter [7]).

and (5.7) yield
√

5
2Φ

ΓFk ln
Fk

ΦV
∼ 1. (5.8)

For Γ = 0.003, and for the Fibonacci sites shown in Fig-
ure 13, the left-hand side of (5.8) respectively reads 0.56
for F11 = 89, 1.06 for F12 = 144, and 1.94 for F13 = 233.
The estimate (5.8) therefore correctly predicts the ob-
served fact that F12 = 144 is the most active nucleation
site at that temperature.

The heuristic argument leading to (5.8) can be jus-
tified and made more precise by means of the results
of Appendix A. The continuum approach used there is
justified because the Fibonacci sites are more and more
sparse. In the case of present interest, keeping only the
Fibonacci sequence of leading nucleation sites, we obtain
the prediction (A.6) for the ordering length, to be shown
in Figure 14.

For a low enough temperature Γ , the sum entering
the right-hand side of (A.6) is sharply cutoff. It can in-
deed be argued that the term of order k in that sum
is essentially Fk−1 for k ≤ k�, while it is exponentially
negligible for k ≥ k� + 1, where k� = Int(K), and K is
the real solution of (5.8), considered as a strict equality,
with FK ≈ ΦK/

√
5, according to (5.4). We have therefore

〈N〉 ≈ Fk�+1, i.e., more explicitly,

〈N〉 ≈ FK AK . (5.9)

The first factor of this expression,

FK ≈ 2Φ√
5 Γ |lnΓ |

(
1 − 1

|ln Γ | ln
2Φ√

5V |ln Γ | + · · ·
)

,

(5.10)
shows that the ordering length obeys a linear divergence
at low temperature, with explicit logarithmic corrections.
The second factor,

AK = Φ1−Frac(K), (5.11)

Fig. 14. Plot of the product Γ 〈N〉 against |ln Γ |, for the
golden-mean slope. Symbols: numerical data. Full line: analyt-
ical prediction (A.6). Dashed lines: Extrema of the asymptotic
result (5.9), corresponding to A = Amax (upper curve) and
A = Amin (lower curve).

is a periodic function of its argument K ≈ |ln Γ |/ lnΦ,
with unit period, which oscillates between the bounds
Amax = Φ and Amin = 1. Oscillatory amplitudes are
commonly observed in models related to self-similar struc-
tures [21]; they originate in the discrete self-similarity of
the underlying sequence. The oscillations of the asymp-
totic amplitude AK , given in (5.11), are damped, except
at extremely low temperature. Figure 14 shows a plot
of numerical data for the product Γ 〈N〉, against |ln Γ |.
These data are well described by the analytical predic-
tion (A.6), and lie within the bounds of the asymptotic es-
timate (5.9)–(5.11). The oscillations become visible on the
analytical curve for the lower temperatures (Γ < 10−4),
which are not directly accessible to simulations.

5.2 Other irrational slopes

We now consider briefly the case of an arbitrary irrational
slope ε. The situation is rather similar to the phenomenon
of hierarchical melting, observed at low temperature in
some incommensurate modulated solids [22].

The nucleation sites can be determined as follows. The
irrational rotation number Ω can be written as an infinite
continued-fraction expansion [13]:

Ω =
1

a1 +
1

a2 +
1

a3 + · · ·

= [a1, a2, a3, . . . ]. (5.12)

The principal approximants of Ω are the rationals

Ωk = pk/qk, (5.13)

whose numerators and denominators obey the same linear
recursion

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2, (5.14)
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with p0 = q−1 = 0, p1 = q0 = 1. The denominators build
the leading sequence of nucleation sites. The rotation num-
ber Ω also has secondary approximants

Ωk,b = (bpk−1 + pk−2)/(bqk−1 + qk−2) (5.15)

for b = 1, . . . , ak − 1 if ak > 1. The denominators are the
subleading nucleation sites.

For the golden-mean slope, we have Ω = 2 − Φ =
[2, 1, 1, 1, 1, . . . ], so that the leading Fibonacci nucleation
sites of Section 5.1 are recovered, whereas there are no
subleading nucleation sites.

The most active nucleation site at low temperature can
again be estimated by comparing the nucleation time and
the advection time. The ordering length 〈N〉 is thus still
predicted to diverge as

〈N〉 ≈ A(ln Γ )
Γ |ln Γ | , (5.16)

at least for irrational numbers with typical Diophantine
properties. Most irrational numbers are typical in this
respect. The presence of secondary approximants makes
however the oscillation pattern of the amplitude A(ln Γ )
more complex than a simple periodic function in general,
in analogy with the low-temperature specific heat peaks
induced by hierarchical melting [22].

In more physical terms, the ordering length 〈N〉 defines
the mean position of an intermittent boundary layer, sepa-
rating an ordered state above it from a disordered state be-
low. This length is thus a kind of finite-temperature equiv-
alent of the “zero-temperature” length ξdyn. Both 〈N〉 and
ξdyn retain the flavour of a boundary layer separating or-
der from disorder. Within each of these boundary layers,
the relaxation is fast, and based on single-particle relax-
ation, i.e., individual particles attaining their positions of
optimal local packing [10,23]. The slow dynamics of co-
operative relaxation only sets in for lengths beyond these,
when the moves by which packing needs to be optimised
become non-local.

6 Discussion

The work we have presented here concerns the effect of
shape on compaction properties of grains. If irrational and
rational values of ε, the volume occupied by a disordered
grain, are taken to correspond to irregular and regular
grains, we see a distinct difference in behaviour between
the two.

While the uniqueness of packing of irregular grains in
their ground state vis-a-vis the degeneracy of perfectly
packed ground states for regularly shaped grains is in ac-
cord with intuition, the effect of dynamics is more sub-
tle. The fact that the perfectly packed and degenerate
ground states of the regular grains are never retrieved
by zero-temperature dynamics, leading instead to density
fluctuations (that have been observed experimentally [9])
is rather subtle, as compared with the less perfect, unique
and perfectly retrievable ground state for the irregular

grains. Clearly, a sharp distinction between neighbouring
rational and irrational values of ε only makes sense for
an infinitely deep system. For a finite column made of N
grains, the distinction is rounded off by finite-size effects.
In particular, the characteristic features of any “large”
rational ε are no longer observed when the period p + q
becomes larger than N .

Zero-temperature steady-state density fluctuations for
regular grains are subextensive: grain orientations are
thus fully anticorrelated, reminiscent of dynamical het-
erogeneities in bridge collapse [10] in strongly compacted
granular media, as well as temporal anticorrelations in
cages [16,17]. Also, while the macroscopic entropy of the
steady state [18] is approximately that of a fully disor-
dered column, consistent with Edwards’ “flatness” hy-
pothesis [1], a microscopic examination of the configura-
tions reveals a rugged landscape, with the most visited
configurations corresponding to the ground states. As a
matter of fact, the steady-state fluctuations of the local
fields remain subextensive at any finite temperature. As a
consequence, after a short transient regime, the steady-
state proportions of ordered and disordered grains are
solely determined by ε, and given by (3.8), for both ra-
tional and irrational values of ε.

Lastly, the low-temperature dynamics for irrational ε
leads to an intermittency of the surface layer. We would
expect that for large enough temperatures, there would
be little distinction between regular and irregular grains;
our model however provides an interesting prediction of
boundary-layer intermittency, which should be visible at
low enough temperatures for irregularly shaped objects.

AM warmly acknowledges the hospitality of the Service de
Physique Théorique, Saclay, where most of this work was con-
ceived.

Appendix A: Distribution of the depth N
of the upper layer

This appendix is devoted to the depth N (t) of the or-
dered layer for low-temperature dynamics in the irrational
case. Our main goal is to derive the stationary distribution
of N , for the effective dynamics described in Section 5.1.

For convenience we use a continuous formalism, treat-
ing N as a real variable. Let π(x) dx be the given
nucleation rate per unit time between x and x + dx,
and p(x, t) dx be the probability of finding the depth N
between x and x+dx at time t. The unknown probability
distribution function p(x, t) obeys the rate equation

(
∂

∂t
+ V

∂

∂x

)
p(x, t) = π(x)P (x, t) − p(x, t)Π(x)

≡ ∂

∂x

(
Π(x)P (x, t)

)
, (A.1)
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with the notations

P (x, t) =
∫ ∞

x

p(y, t) dy, p(x, t) = −∂P (x, t)
∂x

,

Π(x) =
∫ x

0

π(y) dy, π(x) =
dΠ(x)

dx
. (A.2)

Indeed, the left-hand side of (A.1) is the usual covariant
derivative, whose convective term involves the drift veloc-
ity V . The middle side represents the evolution due to
nucleation events, with the first (gain) term originating in
nucleation at depth x, and the second (loss) term origi-
nating in nucleation at depth y < x.

The stationary (time-independent) solution pstat(x)
of (A.1) is such that

V pstat(x) ≡ −V
dPstat(x)

dx
= Π(x)Pstat(x). (A.3)

This separable differential equation easily yields the
results

Pstat(x) = exp
(
− 1

V

∫ x

0

Π(y) dy

)
,

pstat(x) =
Π(x)

V
exp

(
− 1

V

∫ x

0

Π(y) dy

)
, (A.4)

and especially

〈N〉 =
∫ ∞

0

exp
(
− 1

V

∫ x

0

Π(y) dy

)
dx

=
∫ ∞

0

exp
(
− 1

V

∫ x

0

(x − y)π(y) dy

)
dx. (A.5)

These expressions hold for an arbitrary distribution of nu-
cleation rates.

In the case of interest in Section 5.1, taking into ac-
count the leading sequence of Fibonacci sites Fk, with nu-
cleation rates Πk, we obtain

〈N〉 =
∞∑

k=0

V

Ak

(
e−Bk/V − e−Bk+1/V

)
, (A.6)

with

Ak =
k∑

�=0

Π�, Bk =
k−1∑
�=0

(Fk − F�)Π�. (A.7)
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